
CS3485
Deep Learning for Computer Vision

Lec 15: Intro to Image Segmentation

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

What we’ve seen so far

■ In the previous lectures, we learned about detecting objects present in images, along
with the classes that correspond to the detected objects.

■ Today, we will further that by not only drawing a bounding box around the each object
but also by identifying the exact pixels/image regions that contain an object.

Original Image Segmentation in 4 regions■ In Computer Vision, this task is called
Image Segmentation:

Image Segmentation is the task in
which a image is partitioned into

subgroups of pixels called segments or
regions.

■ This process also reduces the image’s
complexity, making analysis simpler.

Applications of Image Segmentation

■ As with Object Detection, Image Segmentation has some interesting applications:

Self-driving Cars: image segmentation is used to identify lanes
and other necessary information

Virtual try-on: Segmenting the customer’s body
pixels from the clothes they are wearing.

■ As with Object Detection, Image Segmentation has some interesting applications:

Applications of Image Segmentation

Handwritten text
recognition

Background Subtraction*: Useful in Video
Conferences and Portrait mode

Biomedical Image Understanding: MRI
and, cancerogenous cell segmentation

* Apple IOS even included it in one of its photo editing softwares! Check it out.

https://www.youtube.com/watch?v=bwt-a8Yz34I

Semantic Segmentation

Road

Pole Vehicle Fence Sidewalk

VegetationBuilding Sky

■ In Deep Learning, one variant of
image segmentation of particular
interest is Semantic
Segmentation:

In Semantic Segmentation, each
region corresponds to an object

with semantic meaning, i.e., it has
an specific class attached to it.

■ Note that in non-semantic
segmentation, image regions
don’t need to have an specific
known semantic meaning in
them.

O
ri

gi
na

l I
m

ag
e

Se
m

an
tic

 S
eg

m
en

ta
tio

n

■ In Supervised Image Segmentation, we have two pieces of data for training:
● An image I, which can be grayscale or RGB
● A segmentation map (same size as I), where each entry is a label of the corresponding pixel in I.

What type of data do we have here?

Original Image Segmentation Map* for a problem with 11 possible different labels

* These matrices are not Grayscale images and their values should range from 1 to K (total number of possible labels in the problem).

■ Note that the input should have the same height and width as the input.
■ This means that the neural network NNθ we need here can be a Fully Convolutional

Network (FCN), just like in YOLO, i.e.,
● The input of the neural network is a tensor (a RGB image) of shape (3,W,H) and the output

will be another tensor, now of shape (K,W,H) , with K channels (one for each segment class).
● We don’t need dense layers, which are usually the source of most weights to be learned in the

network.

What type of Neural Network do we need here?

NNθ

Input Image Output SegmentationU-Net■ In this course, we’ll see one of
the most successful FCNs in
the literature called U-Net,
published in 2015.

■ Its name is due to its U shape.

https://arxiv.org/pdf/1505.04597.pdf

U-Net
3 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 K

2
2

4×
2

2
4

11
2

×1
12

56
×5

6

14×14

The U-Net architecture is
is shown on the right.

Each strip is a tensor (on a
side-view) and the arrows

represent tensor
operations (like

concatenation) or layers
(like ConvLayers and Max

Pooling).

28×28
Conv 3×3 + ReLU Max-pool 2×2

Transp. Conv 2×2 + ReLUConcat. Conv 1×1

Legend:

U-Net
3 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 K

2
2

4×
2

2
4

11
2

×1
12

56
×5

6

14×14

28×28
Conv 3×3 + ReLU Max-pool 2×2

Transp. Conv 2×2 + ReLUConcat. Conv 1×1

Legend:

The numbers on top of
each strip is the number

of channels of that tensor
and the numbers on the
side are its heights and

widths.

Note that we start we an
RGB image (3 channels)
and end up with a tensor

of K channels (one for
each segment class).

U-Net
3 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 K

2
2

4×
2

2
4

11
2

×1
12

56
×5

6

14×14

The main idea is that the
original image gets
“smaller” in terms of
height and width, but
“thicker” in regard the

number of channels. This
is called Downsampling.

It “compresses” / encodes
the visual information its
most important features.

28×28
Conv 3×3 + ReLU Max-pool 2×2

Transp. Conv 2×2 + ReLUConcat. Conv 1×1

Legend:

U-Net
3 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 K

2
2

4×
2

2
4

11
2

×1
12

56
×5

6

14×14

Then it gets thinner and
larger, going back to its

original shape. This
process is called

Upsampling.

It ensures that only useful
information of the image

is being “decompressed”/
decoded (More on it later).

This is done via
Transpose Convolutions.

28×28
Conv 3×3 + ReLU Max-pool 2×2

Transp. Conv 2×2 + ReLUConcat. Conv 1×1

Legend:

U-Net
3 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 K

2
2

4×
2

2
4

11
2

×1
12

56
×5

6

14×14

U-Net also presents these
skip connections that: (1)
as with ResNets, mitigate

the issue of vanishing
gradients and (2) add

extra information to the
decoder that might be lost

because of the
downsampling on the
encoder side of the

network.

28×28
Conv 3×3 + ReLU Max-pool 2×2

Transp. Conv 2×2 + ReLUConcat. Conv 1×1

Legend:

The Transpose Convolution operation

1

3

2

4

2

0

4

1
A ⨂T B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

A = B =

The Transpose Convolution operation

1

3

2

4

2

0

4

1

A = B =

A ⨂T B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

We start by filling the output matrix from its top left corner.

The Transpose Convolution operation

1

3

2

4

2

0

4

1

2

A ⨂T B =

A = B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

2×1 = 2

The Transpose Convolution operation

1

3

2

4

2

0

4

1

2 4

A ⨂T B =

A = B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

2×2 = 4

The Transpose Convolution operation

1

3

2

4

2

0

4

1

2

6

4

A ⨂T B =

A = B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

2×3 = 6

The Transpose Convolution operation

1

3

2

4

2

0

4

1

2

6

4

8

A ⨂T B =

A = B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

2×4 = 8

The Transpose Convolution operation

1

3

2

4

2

0

4

1

2

6

4

8

A ⨂T B =
4

12 16

8

+

A = B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

We go to the next entry in A and, since the stride is 1, we move one entry to the right on the output. Then fill it like before.

The Transpose Convolution operation

1

3

2

4

2

0

4

1

2

6

4

8

A ⨂T B =
4

12 16

8

0 0

0 0

+ +

A = B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

Repeat this process for the next entry in A and the next spots in the output according to the stride.

The Transpose Convolution operation

1

3

2

4

2

0

4

1

2

6

4

8

A ⨂T B =
4

12 16

8

0 0

0 0

1 2

3 4

+ + +

A = B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

Repeat this process for the next entry in A and the next spots in the output according to the stride.

The Transpose Convolution operation

1

3

2

4

2

0

4

1

2

6

4

8

A ⨂T B =
4

12 16

8

0 0

0 0

1 2

3 4

2

6

8

21 18

0 3 4

8

+ + + =

A = B =

■ The typical way in Deep Learning to increase the size (length and width) of a tensor via
Transpose Convolution operations.

■ If we have two matrices, A and B, their transpose convolution convolution, denoted here
as A ⨂T B, is computed via:
● Multiplying each element of A by the whole of matrix B (the kernel here).
● Placing the resulting matrix in a new matrix according with a predefined stride, summing entries

whenever there is an overlap.

■ Here’s an example of this process when the stride is 1 for when A and B are as below:

Finally, sum all the matrices you’ve computed so far and that’s your output!

■ Note that the value of the stride is crucial when defining the output size of the
transpose convolution operation.

■ One particular setting of particular interest in Deep Learning is when we have a
transpose convolution whose kernel is 2×2 and the stride is 2. For example:

■ Note that the tensor size just doubled! This effect is more or less the opposite of 2×2
max-pooling’s and is very useful in the U-Net’s upsampling phase.

The Transpose Convolution operation

1

3

2

4

2

0

4

1

A = B =
2

6

4

8

A ⨂T B (Stride 2) =

4

12 16

8

0 0

0 0

+ + +

1

3

2

4

6

0

8

0 1

0 0 3

12

2

4

16

2 4 4 8

=

Transpose Convolution and U-Net in Pytorch

■ Just as Pytorch defines nn.Conv2d() for convolutional layers, it has the module
nn.ConvTranspose2d() for transpose convolutions:

■ Here, the parameters above* (in_channels, out_channels, kernel_size, stride,
and bias) are of definitions similar to what is found in nn.Conv2d(), but with the
operations that follow the procedure shown in the previous slides.

■ Also, as in nn.Conv2d(), the weights to be learned in this layer are the ones in the
kernel and the amount of them does not change with the input size, only with the input’s
number of channel.

■ While the U-Net model is not pre-implemented in the Torch library, you can find it (along
with a bunch of other segmentation algorithms) in the Segmentation Models library.

nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, bias=True)

*Check the documentation here for more details on the layer and on other possible parameters.

https://smp.readthedocs.io/en/latest/index.html
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

Exercises (In pairs)

■ Do the transpose convolution between A and B with stride 2:

1

1

1

1
B =

1

2

2

2A =
3

3

3 3 1

Instance Segmentation

■ Another special type of segmentation is Instance Segmentation:

Instance segmentation is the task of detecting and delineating each distinct object of interest
appearing in an image.

■ It means that, for each instance of an object in the image, we want its segmentation.
■ In other words, instance segmentation = object detection + semantic segmentation.

Semantic Segmentation Instance SegmentationObject Detection

Applications of Instance Segmentation

■ Instance Segmentation is useful when
distinct objects of a similar type are present
and need to be monitored separately.

■ It then has applications in, for example:
● Self-driving cars: Keeping track of individual

pedestrians and cars in videos.
● Medical scans: In histopathologic images,

we can segment different nuclei which can
be further processed for the detection of
dangerous diseases like cancer.

● Satellite imagery: detection and counting of
cars, ships detection for maritime security,
and sea pollution monitoring

Instance segmentation on self driving cars

Applications of Instance Segmentation

Instance segmentation of different bacterial strains Instance segmentation of in Videos

http://www.youtube.com/watch?v=0pMfmo8qfpQ

Data in Instance Segmentation

■ In Instance segmentation, we need the
following data to train a model:
● The images
● Object bounding boxes,
● Instance-level segmentation ground-truth.

■ A popular dataset that offers this kind of data (and many more*) is called MS COCO
(Microsoft Common Objects in Context). It contains a total of 328K images with
annotated objects from 80 classes. Here are some images with annotated dogs:

* It also proved data for keypoint detection and image captioning (more on these later in the course).

https://cocodataset.org/#home

■ With such data we could Faster R-CNN (shown below) for object detection, for example.
■ Faster R-CNN is also be the basis for Mask R-CNN, published by the same authors in

2017, which adapts Fast R-CNN to Instance Segmentation.

Revisiting Faster R-CNN

CNN
RoI
PoolRPN

FC ‘cat’

FC

(0.6,0.4,0.2,0.7) offset (0.55,0.41,0.2,0.72)+ =

FC

Legend:

CNN: Backbone (VGG16),
RPN: Region Proposal Network,
FC: Fully Connected / Dense layers.

https://arxiv.org/abs/1703.06870

Mask R-CNN

CNN
RoI

AlignRPN

FC ‘cat’

FC

(0.6,0.4,0.2,0.7) offset (0.55,0.41,0.2,0.72)+ =

FC

Legend:

CNN: Backbone (VGG16),
RPN: Region Proposal Network,
FC: Fully Connected / Dense layers.

CNN

■ The main difference between both methods is that Mask R-CNN adds a CNN module for
segmentation after the features/region proposals RoI pooling phase.

■ They also use a RoI Align module* (instead of, bu similar to RoI Pool).

* RoI pool introduces slight object misalignments that don’t affect object classification, but hinder pixel level segmentation. An object
alignment step is necessary to improve segmentation (ref.).

https://arxiv.org/pdf/1703.06870.pdf

Advantages of Mask R-CNN

■ Some advantages of Mask R-CNN for the task of Instance Segmentation:
● Simplicity: Mask R-CNN is simple to train.
● Efficiency: The method is very efficient and adds only a small overhead to Faster R-CNN.
● Flexibility: Mask R-CNN is easy to generalize to other tasks. For example, it is possible to use it

for pose estimation in the same framework (more on it later).

■ Mask R-CNN’s pretrained model is also available in PyTorch! It is similar to Faster R-CNN:

■ For a properly processed image called img, can do inference* via:

from torchvision.models.detection import maskrcnn_resnet50_fpn
from torchvision.models.detection import MaskRCNN_ResNet50_FPN_Weights

model_mask_rcnn = maskrcnn_resnet50_fpn(weights=MaskRCNN_ResNet50_FPN_Weights.COCO_V1)

results = model_mask_rcnn(img)

* For more details details on the necessary preprocessing and the output format of Mask R-CNN, check out this link.

https://pytorch.org/vision/master/auto_examples/plot_visualization_utils.html#instance-segmentation-models

Segment Anything

■ In a 2023 paper, Meta (aka Facebook)
released one of the most powerful
segmentation models available, called
Segment Anything Model (SAM).

■ It was trained on what is now called SAM
dataset, which contains an staggering high
quality 1.1 billion segmentation masks and
100 million images.

■ The architecture, on the other hand, was a
simple encoder-decoder network (more on it
later in the course).

■ You can play with it in their official website.

https://arxiv.org/pdf/2304.02643.pdf
https://segment-anything.com/dataset/index.html
https://segment-anything.com/dataset/index.html
https://segment-anything.com/

Panoptic Segmentation

Semantic Segmentation

Instance Segmentation Panoptic Segmentation

Original Image■ A final type of segmentation is called
Panoptic Segmentation:

Panoptic Segmentation is the task to
detect and segment all objects in the

picture, including the background, and
distinguish different instances.

■ Note that: pan (from greek meaning
“all”) + optic (meaning visual data).

■ In PyTorch, it can be achieved using the
many detection tools in the Detectron2
Library* (more next time).

* Here’s a nice video of its results for Panoptic Segmentation

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://www.youtube.com/watch?v=U9PAcWMX3LA

Vide0: Segmentation and Seft-driving cars

http://www.youtube.com/watch?v=HS1wV9NMLr8
http://www.youtube.com/watch?v=hA_-MkU0Nfw

